Model Pruning for Embedded AI in ADAS 9

[๋พฐํ‹€ ์‹ฌํ”Œ ๋ฆฌ๋ทฐ 2024] An edge computing system with AMD Xilinx FPGA AI customer platform for advanced driver assistance system

์ด ๋…ผ๋ฌธ์—์„œ๋Š” AMD Xilinx FPGA AI๊ณ ๊ฐ ํ”Œ๋žซํผ์„ ์ด์šฉํ•œ ์—ฃ์ง€ ์ปดํ“จํŒ… ์‹œ์Šคํ…œ๊ณผ ๊ณ ๊ธ‰ ์šด์ „๋ณด์กฐ ์‹œ์Šคํ…œ (ADAS)๊ด€๋ จ ๊ธฐ์ˆ ์— ๋Œ€ํ•ด์„œ ์„ค๋ช…ํ•œ๋‹ค. AMD Xilinx FPGA AI ๊ณ ๊ฐ ํ”Œ๋žซํผ์„ ์ด์šฉํ•œ ์—ฃ์ง€ ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์€ ๊ณ ๊ธ‰ ์šด์ „์ž ๋ณด์กฐ ์‹œ์Šคํ…œ(ADAS)์— ๋งค์šฐ ์œ ์šฉํ•œ ๊ธฐ์ˆ ์ด๋‹ค. ์ด ์‹œ์Šคํ…œ์€ ๋„๋กœ ์ƒํƒœ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ํŠนํžˆ ํฌ์žฅ๊ฒฐํ•จ ํƒ์ง€์™€ ๊ฐ™์€ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ ์ตœ์ ํ™” ๋˜์–ด ์žˆ๋‹ค. FPGA๋Š” ํ•˜๋“œ์›จ์–ด์—์„œ ์ง์ ‘ AI๋ชจ๋ธ์„ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ์–ด ๋†’์€ ์„ฑ๋Šฅ๊ณผ ์ €์ง€์—ฐ ์ฒ˜๋ฆฌ๋Šฅ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ADAS๋Š” ๋‹ค์–‘ํ•œ ์„ผ์„œ์™€ ๋น„๋””์˜ค์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ์šด์ „์ž์˜ ์•ˆ์ „์„ ์ง€์›ํ•˜๋Š” ์‹œ์Šคํ…œ์œผ๋กœ, ์ด ํ”Œ๋žซํผ์€ AI์ฒ˜๋ฆฌ ์„ฑ๋Šฅ๊ณผ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ๋ถ„์„๊ณผ ๊ฒฐ์ •์„ ๋‚ด๋ฆฌ๋Š” ๋ฐ ๋„์›€์„ ์ค€๋‹ค.  ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ:FPGA ๊ธฐ๋ฐ˜ AI..

[๋พฐํ‹€ ์‹ฌํ”Œ ๋ฆฌ๋ทฐ 2021] Model optimization techniques for embedded artificial intelligence

์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋ชจ๋ธ์ตœ์ ํ™” ๊ธฐ๋ฒ•์— ๋Œ€ํ•ด์„œ ์„ค๋ช…ํ•œ๋‹ค. ๋ชจ๋ธ ์ตœ์ ํ™”๋Š” ์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์—์„œ ์ธ๊ณต์ง€๋Šฅ(AI)๋ชจ๋ธ์˜ ํšจ์œจ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์ด๋‹ค. ํŠนํžˆ ๋ฆฌ์†Œ์Šค๊ฐ€ ์ œํ•œ์ ์ธ ํ™˜๊ฒจ์—์„œ AI๋ชจ๋ธ์„ ์›ํ™œํ•˜๊ฒŒ ์‹คํ–‰ํ•˜๋ ค๋ฉด ๋ชจ๋ธ ํฌ๊ธฐ์™€ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์ค„์ด๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค.  ๋„คํŠธ์›Œํฌ ๊ฐ€์ง€์น˜๊ธฐ(Network Pruning):๋„คํŠธ์›Œํฌ ๊ฐ€์ง€์น˜๊ธฐ๋Š” ๋ชจ๋ธ์—์„œ ์ค‘์š”ํ•˜์ง€ ์•Š๊ฑฐ๋‚˜ ๋ถˆํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ œ๊ฑฐํ•˜์—ฌ ๋ชจ๋ธ์˜ ํฌ๊ธฐ๋ฅผ ์ค„์ด๋Š” ๊ธฐ๋ฒ•์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์—ฐ์‚ฐ ๋ณต์žก๋„๋ฅผ ๋‚ฎ์ถ”๊ณ  ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€์ง€์น˜๊ธฐ๋Š” ํŠนํžˆ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์˜ ๋ถˆํ•„์š”ํ•œ ์—ฐ๊ฒฐ์„ ์ œ๊ฑฐํ•ด์„œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ๊ณ„์‚ฐ์ง€์šฐ๋„ˆ์„ ์ ˆ์•ฝํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•œ๋‹ค. ์ €์ •๋ฐ€๋„ ์–‘์žํ™”(Low Precision Quantization)-:์–‘์žํ™”๋Š” ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ €์ •๋ฐ€๋„(ex.8..

[๋พฐํ‹€ ์‹ฌํ”Œ ๋ฆฌ๋ทฐ 2023] An optimized DNN model for real-time inferencing on an embedded device

์ด ๋…ผ๋ฌธ์€ DNN(์‹ฌ์ธต ์‹ ๊ฒฝ๋ง)๋ชจ๋ธ์˜ ์‹ค์‹œ๊ฐ„ ์ถ”๋ก ์„ ์œ„ํ•ด ์ž„๋ฒ ๋””๋“œ ์žฅ์น˜์—์„œ ์ตœ์ ํ™”ํ•˜๋Š” ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋ฐฉ๋ฒ•๋“ค์— ๋Œ€ํ•œ๊ฒƒ์ด๋‹ค. ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™”(Model Compression):DNN ๋ชจ๋ธ์„ ์ž„๋ฒ ๋””๋“œ ์žฅ์น˜์— ์ ํ•ฉํ•˜๋„๋ก ๊ฒฝ๋Ÿ‰ํ™”ํ•˜๋Š” ๊ธฐ์ˆ ์ด ํ•„์š”ํ•˜๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ฐ€์ค‘ํ”ผ ํ”„๋ฃจ๋‹(pruning), ์–‘์žํ™”(quantization), ์ง€์‹ ์ฆ๋ฅ˜(knowledge distillation)๋“ฑ์„ ์‚ฌ์šฉํ•ด์„œ ๋ชจ๋ธ ํฌ๊ธฐ๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค.์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•๋“ค์€ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๊ณ„์‚ฐ ์ž์›๊ณผ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ์„ ์ตœ์ ํ™” ํ•œ๋‹ค. ํ•˜๋“œ์›จ์–ด ๊ฐ€์†(Hardware Acceleration):์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์—์„œ์˜ DNN์ถ”๋ก  ์†๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด, FPGA๋‚˜ ASIC๊ณผ ๊ฐ™์€ ํ•˜๋“œ์›จ์–ด ๊ฐ€์†๊ธฐ๋ฅผ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ๋ณ‘๋ ฌ์ฒ˜๋ฆฌ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„ ์ถ”๋ก  ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™” ํ•˜๋Š”..

[๋พฐํ‹€ ์‹ฌํ”Œ ๋ฆฌ๋ทฐ 2024] Comparative Survey of Embedded System Implementations of Convolutional Neural Networks in Autonomous Cars Applications

์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์ž์œจ์ฃผํ–‰์ฐจ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์„ ํ†ตํ•ด ๊ตฌํ˜„๋œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง(CNN)์˜ ๋น„๊ต๋ถ„์„์„ ๋‹ค๋ฃฌ๋‹ค. ์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์˜ ์—ญํ• :์ž์œจ์ฃผํ–‰์ฐจ์—์„œ๋Š” ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋Œ€๋Ÿ‰์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•ด์•ผ ํ•˜๋ฏ€๋กœ, CNN์„ ํ†ตํ•ด ์ธ์‹ ๋ฐ ์ฒ˜๋ฆฌ ์ž‘์—…์„ ๋น ๋ฅด๊ณ  ํšจ์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•œ๋‹ค.์ด๋ฅผ ์œ„ํ•ด GPU, FPGA, ํŠน์ˆ˜ ๋ชฉ์ ์˜ AIํ•˜๋“œ์›จ์–ด ๋“ฑ์ด ์ž์ฃผ ์‚ฌ์šฉ๋œ๋‹ค.์ด๋“ค ์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์€ CNN๋ชจ๋ธ์„ ์‹คํ–‰ํ•˜๋Š”๋ฐ ํ•„์š”ํ•œ ์—ฐ์‚ฐ์†๋„์™€ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ ์ œ๊ณตํ•ด์•ผํ•œ๋‹ค. ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ ๋ฐ ์„ฑ๋Šฅ ๋น„๊ต:๊ฐ๊ธฐ ๋‹ค๋ฅธ ์ž„๋ฒ ๋””๋“œ ์‹œ์Šคํ…œ์€ CNN๋ชจ๋ธ์„ ์‹คํ–‰ํ•  ๋•Œ ์„ฑ๋Šฅ๊ณผ ์—๋„ˆ์ง€ ์†Œ๋น„์—์„œ ์ฐจ์ด๋ฅผ ๋ณด์ธ๋‹ค.์˜ˆ๋ฅผ๋“ค์–ด, FPGA๋Š” ๋†’์€ ์ฒ˜๋ฆฌ์†๋„์™€ ๋‚ฎ์€ ์ „๋ ฅ์†Œ๋ชจ๋ฅผ ์ž๋ž‘ํ•˜๋Š” ๋ฐ˜๋ฉด, GPU๋Š” ๋” ๋†’์€ ์ฒ˜๋ฆฌ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜์ง€๋งŒ ์ƒ๋Œ€์ ์œผ๋กœ ๋งŽ์€ ์ „๋ ฅ์„ ์†Œ๋ชจํ•œ๋‹ค.์ด๋Ÿฌํ•œ ํŠน์„ฑ์„ ..

[๋พฐํ‹€ ์‹ฌํ”Œ ๋ฆฌ๋ทฐ 2023] A survey on approximate edge AI for energy efficient autonomous driving services

approximate edge AI for energy efficient autonomous driving services์— ๋Œ€ํ•œ survey๋ฅผ ๋‹ค๋ฃฌ ๋…ผ๋ฌธ์ด๋‹ค. "Approximate Edfe AI"๋ฅผ ํ™œ์šฉํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ์ž์œจ์ฃผํ–‰ ์„œ๋น„์Šค์— ๊ด€ํ•œ ์„ค๋ฌธ์„ ๋‹ค๋ฃจ๋Š”๋ฐ,์ด์„ค๋ฌธ์€ ์ตœ์‹ ์˜ ๊ทผ์‚ฌ์  ์—ฃ์ง€ AIํ”„๋ ˆ์ž„์›Œํฌ์™€ ๊ณต๊ณต๋ฐ์ดํ„ฐ์…‹์„ ๊ฒ€ํ† ํ•˜๋ฉฐ, ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์—์„œ์˜ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ ๋†’์ด๋Š”๋ฐ ํ•„์š”ํ•œ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ๋“ค์„์†Œ๊ฐœํ•œ๋‹ค.ํŠนํžˆ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ์ €์ „๋ ฅ ๋ฐ ๋ฉ”๋ชจ๋ฆฌ ์ œํ•œ ์‹œ์Šคํ…œ์—์„œ ์ž์œจ์ฃผํ–‰ ์„œ๋น„์Šค ๊ฐœ๋ฐœ์„ ์ง€์›ํ•˜๋Š”๋ฐ ์ค‘์ ์„ ๋‘๊ณ  ์žˆ๋‹ค. ๊ทผ์‚ฌ์  ์—ฃ์ง€ AI:์ด ๊ธฐ์ˆ ์€ ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์‹ค์‹œ๊ฐ„ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ณ , ์—๋„ˆ๋น„ ์†Œ๋น„๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ:์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์ด ๊ณ„์† ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ, ์ด๋Ÿฌํ•œ ..

[๋พฐํ‹€ ์‹ฌํ”Œ ๋ฆฌ๋ทฐ 2021] Deep-learning-based embedded ADAS ์‹œ์Šคํ…œ

Deep-learning-based embedded ADAS ์‹œ์Šคํ…œ์€ ๋ญ˜๊นŒ?Deep-learning-based embedded ADAS(Advanced Driver Assistance System) ์‹œ์Šคํ…œ์€ ์ž์œจ์ฃผํ–‰ ๋ฐ ์šด์ „ ๋ณด์กฐ ๊ธฐ๋Šฅ์„ ํ–ฅ์ƒ ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์ปดํ“จํ„ฐ ๋น„์ „ ๊ธฐ์ˆ ๊ณผ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜๋Š” ์‹œ์Šคํ…œ์ด๋‹ค.์ด ์‹œ์Šคํ…œ์€ ๋‹ค์–‘ํ•œ ์„ผ์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ณ , ๋„๋กœํ‘œ์ง€๋งŒ, ๋ณดํ–‰์ž, ์ฐจ์„ , ๊ฐ์ฒด ๋“ฑ์„ ์ธ์‹ํ•ด์„œ ์šด์ „์ž์˜ ์•ˆ์ „์„ ๋„์™€์ฃผ๋Š” ์—ฌ๋Ÿฌ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๋”ฅ๋Ÿฌ๋‹์„ ํ†ตํ•œ ๊ฐ์ฒด ํƒ์ง€ ๋ฐ ์ฐจ์„  ์ธ์‹:๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์ด์šฉํ•ด ์ฐจ๋Ÿ‰ ์ฃผ๋ณ€์˜ ๊ฐ์ฒด๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•˜๊ณ  ์ฐจ์„  ๋ณ€ํ™”๋ฅผ ์ธ์‹ํ•˜๋Š” ๊ธฐ์ˆ ์ด ํ•ต์‹ฌ์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ฐจ๋Ÿ‰์€ ๋„๋กœ์˜ ๊ตฌ์กฐ๋ฅผ ์ดํ•ดํ•˜๊ณ , ๋ณดํ–‰์ž๋‚˜ ๋‹ค๋ฅธ ์ฐจ๋Ÿ‰์„ ์‹๋ณ„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์—ฃ์ง€ ์ปดํ“จํŒ…์„ ํ™œ์šฉํ•œ ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ:Emb..

[๋พฐํ‹€ ์‹ฌํ”Œ ๋ฆฌ๋ทฐ 2024] EASE-E: Edge-AI based System for Energy-Efficiency in Autonomous Driving (ADAS/AD)

EASE-E:  Edge-AI ๊ธฐ๋ฐ˜ ์ž์œจ์ฃผํ–‰(ADAS/AD) ์—๋„ˆ์ง€ ํšจ์œจ ์‹œ์Šคํ…œ์€ ๋ญ˜๊นŒ?EASE-E ์‹œ์Šคํ…œ์€ ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์—์„œ ์—๋„ˆ์ง€ ํšจ์œจ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด Edge-AI๊ธฐ์ˆ ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค.์ด ์—ฐ๊ตฌ๋Š” EASE-E์‹œ์Šคํ…œ์ด ๊ณ ์†๋„๋กœ์—์„œ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ 32.8%, ๋„์‹œํ™˜๊ฒฝ์—์„œ๋Š” 10.8% ๊ฐœ์„ ํ•œ๋‹ค๊ณ  ์„ค๋ช…ํ•œ๋‹ค.์ด๋ฅผ ํ†ตํ•ด ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์—๋„ˆ๋น„ ์†Œ๋น„๋ฅผ ์ตœ์ ํ™”ํ•˜์—ฌ๋” ๊ธด ์ฃผํ–‰๊ฑฐ๋ฆฌ์™€ ๋” ๋‚˜์€ ๋ฐฐํ„ฐ๋ฆฌ ํšจ์œจ์„ฑ์„ ๊ธฐ๋Œ€ํ• ์ˆ˜ ์žˆ๋‹ค๊ณ ํ•œ๋‹ค. Edge-AI ํ™œ์šฉ:์ด ์‹œ์Šคํ…œ์€ ์ฐจ๋Ÿ‰ ๋‚ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ฒ˜๋ฆฌํ•ด์„œ, ํด๋ผ์šฐ๋“œ๋กœ์˜ ์ „์†ก์„ ์ตœ์†Œํ™”ํ•˜๊ณ  ์ง€์—ฐ์‹œ๊ฐ„์„ ์ค„์ด๋ฉฐ ์—๋„ˆ์ง€ ์†Œ๋น„๋ฅผ ์ ˆ๊ฐํ•œ๋‹ค. ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ ํ–ฅ์ƒ:๊ณ ์†๋„๋กœ์™€ ๋„์‹œํ™˜๊ฒฝ์—์„œ ๊ฐ๊ฐ 32.8%์™€ 10.8%์˜ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ ํ–ฅ์ƒ์ด ๋ณด๊ณ  ๋˜์—ˆ๋‹ค. ์ž์œจ์ฃผํ–‰(AD..

[๋พฐํ‹€ ์‹ฌํ”Œ ๋ฆฌ๋ทฐ 2023] Real-time multi-task ADAS implementation on reconfigurable heterogeneous MPSoC architecture

์‹ค์‹œ๊ฐ„ ๋‹ค์ค‘ ์ž‘์—… ADAS ๊ตฌํ˜„์„ ๊ท€ํ•œ ์žฌ๊ตฌ์„ฑ ๊ฐ€๋Šฅํ•œ ์ด๊ธฐ์ข… MPSoC ์•„ํ‚คํƒ์ฒ˜๋ž€ ๋ฌด์—‡์„ ๋งํ•˜๋Š” ๊ฑด๊ฐ€?์ด ๋…ผ๋ฌธ์˜ ์—ฐ๊ตฌ๋ฅผ ADAS(Advanced Driver Assistance Systems)์˜ ์‹ค์‹œ๊ฐ„ ๋‹ค์ค‘ ์ž‘์—… ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด ์žฌ๊ตฌ์„ฑ ๊ฐ€๋Šฅํ•œ ์ด๊ธฐ์ข… MPSoC(Multi-Processor System-on-Chip) ์•„ํ‚คํ…์ฒ˜๋ฅผ ํ™œ์šฉํ•˜๋Š” ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค.ADAS๋Š” ์ž์œจ์ฃผํ–‰๊ณผ ์šด์ „ ๋ณด์กฐ ์‹œ์Šคํ…œ์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ์„ผ์„œ ๋ฐ์ดํ„ฐ์™€ ๋น„๋””์˜ค ์ฒ˜๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€๋ฐ ๋‹ค์ค‘ ์ž‘์—… ํ•™์Šต:ADAS๋Š” ์—ฌ๋Ÿฌ๊ฐœ์˜ ์ž‘์—…์„ ๋™์‹œ์— ์ฒ˜๋ฆฌํ•ด์•ผ ํ•œ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์ž๋ฉด, ๋„๋กœ์ฐจ์„  ๊ฐ์ง€, ๊ฐ์ฒด ํƒ์ง€, ๋ฐฉํ–ฅ ์˜ˆ์ธก ๋“ฑ ๋‹ค์–‘ํ•œ ์ž‘์—…์„ ๋™ใ„ฑ์‹œ์— ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์–ด์•ผํ•œ๋‹ค.์ด๋ฅผ ์œ„ํ•ด์„œ ๋‹ค์ค‘์ž‘์—…ํ•™์Šต(multi..

[๋พฐํ‹€ ์‹ฌํ”Œ ๋ฆฌ๋ทฐ 2020] Resource-constrained machine learning for ADAS: A systematic review

๋ฆฌ์†Œ์Šค ์ œ์•ฝ๋ฌธ์ œ:ADAS ์‹œ์Šคํ…œ์€ ๋†’์€ ์„ฑ๋Šฅ์„ ์š”๊ตฌํ•˜๋ฉด์„œ๋„ ํ•˜์œผ๋’ˆ์–ด ์ž์›(์ฒ˜๋ฆฌ๋Šฅ๋ ฅ, ๋ฉ”๋ชจ๋ฆฌ, ์ „๋ ฅ ์†Œ๋น„ ๋“ฑ)์— ์ œํ•œ์„ ๋ฐ›๋Š”๋‹ค.๋”ฐ๋ผ์„œ ์ž์›์ œ์•ฝ์„ ๊ณ ๋ คํ•œ ๋ชจ๋ธ์„ค๊ณ„๊ฐ€ ์ค‘์š”ํ•˜๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹์˜ ํ™œ์šฉ:  ADAS์—์„œ ๋จธ์‹  ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์ž์œจ์ฃผํ–‰, ๋ฌผ์ฒด์ธ์‹, ๋„๋กœ ์ƒํ™ฉ ๋ถ„์„ ๋“ฑ ์—ฌ๋Ÿฌ๋ถ„์•ผ์—์„œ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ํ•œ๋‹ค.์ด๋Ÿฌํ•œ ML๋ชจ๋ธ์„ ๋ฆฌ์†Œ์Šค ์ œํ•œ์ ์ธ ํ™˜๊ฒฝ์—์„œ ํšจ์œจ์ ์œผ๋กœ ๊ตฌํ˜„ํ•˜๋Š” ๊ธฐ์ˆ ์ด ์†Œ๊ฐœ๋จ. ์ตœ์ ํ™” ๊ธฐ๋ฒ•: ๋…ผ๋ฌธ์€ ๋ฆฌ์†Œ์Šค ์ œ์•ฝ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ๋‹ค๋ฃธ. ex. ๋ชจ๋ธ ๊ฒฝ๋Ÿ‰ํ™”, ์—ฐ์‚ฐ๋Ÿ‰ ์ตœ์ ํ™”, ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ• ๋“ฑ ๋ฏธ๋ž˜ ์—ฐ๊ตฌ๋ฐฉํ–ฅ:์ด ๋ฆฌ๋ทฐ๋Š” ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์œผ๋กœ, ๋ฆฌ์†Œ์Šค ์ œ์•ฝ์„ ๊ทน๋ณต ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ธฐ์ˆ ๋“ค์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ๊ฐ•์กฐํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ž์› ์ œ์•ฝ์ด ์žˆ๋Š” ํ™˜๊ฒฝ์—์„œ ADAS๋ฅผ ๊ตฌํ˜„ํ•˜๋ ค๋Š” ์—ฐ๊ตฌ์ž๋‚˜ ์—ฐ์ง€..